3.140 \(\int \frac{\tanh ^3(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=45 \[ \frac{(a+b) \log \left (a \cosh ^2(c+d x)+b\right )}{2 a b d}-\frac{\log (\cosh (c+d x))}{b d} \]

[Out]

-(Log[Cosh[c + d*x]]/(b*d)) + ((a + b)*Log[b + a*Cosh[c + d*x]^2])/(2*a*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0883408, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4138, 446, 72} \[ \frac{(a+b) \log \left (a \cosh ^2(c+d x)+b\right )}{2 a b d}-\frac{\log (\cosh (c+d x))}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[c + d*x]^3/(a + b*Sech[c + d*x]^2),x]

[Out]

-(Log[Cosh[c + d*x]]/(b*d)) + ((a + b)*Log[b + a*Cosh[c + d*x]^2])/(2*a*b*d)

Rule 4138

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> Module[{ff =
 FreeFactors[Cos[e + f*x], x]}, -Dist[(f*ff^(m + n*p - 1))^(-1), Subst[Int[((1 - ff^2*x^2)^((m - 1)/2)*(b + a*
(ff*x)^n)^p)/x^(m + n*p), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, n}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n] && IntegerQ[p]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rubi steps

\begin{align*} \int \frac{\tanh ^3(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1-x^2}{x \left (b+a x^2\right )} \, dx,x,\cosh (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1-x}{x (b+a x)} \, dx,x,\cosh ^2(c+d x)\right )}{2 d}\\ &=-\frac{\operatorname{Subst}\left (\int \left (\frac{1}{b x}+\frac{-a-b}{b (b+a x)}\right ) \, dx,x,\cosh ^2(c+d x)\right )}{2 d}\\ &=-\frac{\log (\cosh (c+d x))}{b d}+\frac{(a+b) \log \left (b+a \cosh ^2(c+d x)\right )}{2 a b d}\\ \end{align*}

Mathematica [A]  time = 0.106356, size = 41, normalized size = 0.91 \[ \frac{(a+b) \log \left (a \cosh ^2(c+d x)+b\right )-2 a \log (\cosh (c+d x))}{2 a b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[c + d*x]^3/(a + b*Sech[c + d*x]^2),x]

[Out]

(-2*a*Log[Cosh[c + d*x]] + (a + b)*Log[b + a*Cosh[c + d*x]^2])/(2*a*b*d)

________________________________________________________________________________________

Maple [B]  time = 0.054, size = 196, normalized size = 4.4 \begin{align*} -{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{1}{2\,bd}\ln \left ( \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}a+b \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }+{\frac{1}{2\,da}\ln \left ( \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}a+b \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }-{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{1}{bd}\ln \left ( \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*x+c)^3/(a+b*sech(d*x+c)^2),x)

[Out]

-1/d/a*ln(tanh(1/2*d*x+1/2*c)+1)+1/2/d/b*ln(tanh(1/2*d*x+1/2*c)^4*a+b*tanh(1/2*d*x+1/2*c)^4+2*tanh(1/2*d*x+1/2
*c)^2*a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)+1/2/d/a*ln(tanh(1/2*d*x+1/2*c)^4*a+b*tanh(1/2*d*x+1/2*c)^4+2*tanh(1/2*d
*x+1/2*c)^2*a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)-1/d/a*ln(tanh(1/2*d*x+1/2*c)-1)-1/d/b*ln(tanh(1/2*d*x+1/2*c)^2+1)

________________________________________________________________________________________

Maxima [A]  time = 1.75167, size = 104, normalized size = 2.31 \begin{align*} \frac{d x + c}{a d} + \frac{{\left (a + b\right )} \log \left (2 \,{\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a e^{\left (-4 \, d x - 4 \, c\right )} + a\right )}{2 \, a b d} - \frac{\log \left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}{b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^3/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

(d*x + c)/(a*d) + 1/2*(a + b)*log(2*(a + 2*b)*e^(-2*d*x - 2*c) + a*e^(-4*d*x - 4*c) + a)/(a*b*d) - log(e^(-2*d
*x - 2*c) + 1)/(b*d)

________________________________________________________________________________________

Fricas [B]  time = 2.32985, size = 294, normalized size = 6.53 \begin{align*} -\frac{2 \, b d x -{\left (a + b\right )} \log \left (\frac{2 \,{\left (a \cosh \left (d x + c\right )^{2} + a \sinh \left (d x + c\right )^{2} + a + 2 \, b\right )}}{\cosh \left (d x + c\right )^{2} - 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2}}\right ) + 2 \, a \log \left (\frac{2 \, \cosh \left (d x + c\right )}{\cosh \left (d x + c\right ) - \sinh \left (d x + c\right )}\right )}{2 \, a b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^3/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

-1/2*(2*b*d*x - (a + b)*log(2*(a*cosh(d*x + c)^2 + a*sinh(d*x + c)^2 + a + 2*b)/(cosh(d*x + c)^2 - 2*cosh(d*x
+ c)*sinh(d*x + c) + sinh(d*x + c)^2)) + 2*a*log(2*cosh(d*x + c)/(cosh(d*x + c) - sinh(d*x + c))))/(a*b*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh ^{3}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)**3/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(tanh(c + d*x)**3/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.79071, size = 107, normalized size = 2.38 \begin{align*} -\frac{\frac{2 \, d x}{a} - \frac{{\left (a + b\right )} \log \left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}{a b} + \frac{2 \, \log \left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}{b}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^3/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

-1/2*(2*d*x/a - (a + b)*log(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) + a)/(a*b) + 2*log(e
^(2*d*x + 2*c) + 1)/b)/d